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Why?

e Distributional approximation pays little attention to the

tail probabilities.
e In statistical inference, the tail probabilities matter!

e The error estimates of distributional approximation are
useless because the tail probabilities are often

significantly smaller than the error estimates.
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What’s the moderate deviation?

Petrov (1975), p. 228: let X;, 1 <i < n, be independent and identically

distributed (i.i.d.) random variables with E(X;) = 0 and Var(X;) = 1,

if for some tg5 > 0,
Eetol X1l < co < 00,

then there exist positive constants ¢; and ¢y depending on ¢y and ¢, such
that

1 " .
P(\/ﬁZilezzz) :1—|—O(1)1+23
1 —®(z) vn o

where ®(z) is the distribution function of the standard normal, |O(1)| <
Co.

0<2z< cln1/6,

e ¢ and co”?

e The range of values of n?
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Why do we need Poisson?

e Since the pioneering work Chen (1975), it has been
shown that, for the counts of rare events, Poisson
distribution and its “relatives” provide a better

approximation in terms of stronger metrics.

e BUT for the tail probabilities, we don’t need the stronger

metrics, can’t we use normal?
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Example

o Let {X;: 1 <1< n} beiid with a continuous cumulative
distribution function, we are interested in the
distribution of records in {X;}.

e X, is always a record: ignore it.
e For 2 <:<n, X;is a record if X; > maxj<;<i—1 Xj.
o [, := 1[Xz > MaX1<j<i—1 XJ]

® Sn = Z?:Q ]z
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Approximations of 5,

El, =1/i and {[; : 2 <1i < n} are independent.

A i=ES, =) ", %; 02 = Var(S,) =Y

An — on € (0,1).

Under the Kolmogorov distance, the error of

— normal approximation is O(log_l/ ’n),

— Poisson approximation is O(log™

1

n
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How about the tail probabilities?
We consider the tail probabilities P(S,, > v, ) with

Un = Ap + 3 - 0, and compare P(S,, > v,) with moderate
deviations based on Pn()\,), Pn(c2), N, ~ N(\,, 02).
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P(S, > v,)/P(N, > v,)

j -

—Record tail/Normal tall

0 2 4 6 8 10
n %104
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P(S, > v,)/P(N, > v,) with 0.5 correction

—Record tail/Normal tall

0 2 4 6 8 10
n %104
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P(Sn > vn)/Pn(A)([vn, 00))
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P(Sn > vn)/Pn(oy)([vn, 00))

2
N =
1.5}
O
§ 1
05
—Record tail/Pn tall
O | | | |
0 2 4 §) 8 10

n % 10%
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The winner is Pn(\,)

—Record tail/Pn tail

4 6 8 10
n ><104

—Record tail/Normal tail

4 6 8 10
n %x10%
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—Record tail/Pn talil
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—Record tail/Normal tail
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Pn(1) tails vs Normal tails
(with and without .5 correction)

150, Pn(1))N(1,1j
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One std to four std away from the mean

ratio

ratio
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One std to six std
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Conclusions

Poisson(\) vs N (A, \):
e Poisson has a heavier tail than normal tail;

e there is an acceleration of the ratio of the tail
probabilities beyond a few standard deviations when A is

not large enough;

e unlike normal, looking at the # of standard deviations

away does not work for Pn when A is not large enough;

e a small change of the value of A has significant impact on

its moderate deviations.
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Poisson moderate deviation
— Chen, Fang & Shao (2013)

e Let X;’s be Bernoulli rvs with P(X; =1) =p;, 1 <i < n.
o W =>" X,.
e The moderate deviation bound is, with &€ = (k — X)/V/A,

P(W > k)
Pn(p)([k, 00))

e What is C7?

— 1| < C(max p;)(1 + £€2).
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Matching: similar
e n: fixed;
e m: a uniform random permutation of {1,...,n};
o Xi=1g_r@n;
o W => "X, # fixed points in the permutation.
e P{i=mn(i)}) =1/nso u=1.

e For ] 7& i, E(XJ|XZ — 1) — 1/(7?,— 1), SO
> i E(X| X =1) =1, E(W?) =2/n and Var(W) = 1.

o For all k with k%/n < ¢,

P(W > k)
Pn(1)([k, 00))

—1| < Ck*/n.
——

<c
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Our approach

e IV: a non-negative integer-valued random variable with

mean 1 and variance o?.

e We consider a Pn approximation of W — a for an a < p.

e V?° has the size-biased distribution:

wP(W = w)
P(W =w) = > 0.
e Let \=pu—a,Y ~ Pn(\). Then for fixed integer k with
T = % > 1, we have
PW —-a>k) |
P(Y > k)

<3A et PLLUEIW 4+ 1 — W9 + |u— A}
+P(W —a < —1).
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When a =0

The bound is reduced to

P(W > k)
Eer

— 1‘ < 3x6x2+1E\W +1—-W?|.

vs Chen, Fang & Shao (2013):
‘ P(W > k)

T 1‘ < C(6) + 620) (1 + 22).

e Our bound is easy to compute.

e It contains no unspecified constants.
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Can we do better?

e Pn()\) is the stationary distribution of the birth-death

process with birth rate A and unit per capita death rate.

e The solution of

Ag(g) = AlglG+1)—g()l+7lg(7 —1) —g()]
= h(j) =Pn(Mih}, 720,

1S
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e For h = 1[k,oo)7
g(i) —gli—1) = — /O TEZi(1) - h(Zia (1)) dt

—E/O e_tl{Zi_l(t):k—l}dt-

e Using coupling and the birth-death Markov process,
1Ag]l = OA2)Pu(N){h}, [[A%g] = O(A~")Pn(N){h}.

e Using these estimates, together with some dependence
structure, we can work on W — a being approximated by
Pn(\) through Stein’s equation:

PW —a > k) —Pn(XN)([k,00))
= E[h(W —a) — Pun(A\){h}]
~ EAg(W —a).
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e Some technical manipulation, we then get bounds in

terms of ||Ag||, ||A%g|| and different characteristics of W.

e Because Pn(\)([k, o)) is in the bounds of ||Ag|| and
|A%g]|, divide both sides by Pn(\)([k, 00)).
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Example

e {X;, 1 <i<n}: independent Bernoulli random variables
with P(XZ = 1) = D; € (O, 1), W = Z?:l X;.

¢ \=EW —a >0, 0?=Var(W),Y ~ Pn()\) and

k—M\
= — >
T o 1,

Rer ekt

< [4a:ex2+1 + 1] something like max p;/o
(2

_ 2)2
+3\)\—a2\az)\_1ew2+1 +exp{—('u ;H_ ) }
[
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Matching problem
For a fixed n, let m be a uniform random permutation of
{1,...,n}, W=>3"", 14y be the number of fixed points

in the permutation, then

P(W Z k) §x6x2—|—1

Pn(1)([k, o)) n

where z .=k —1 > 1.

IN
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Take home messages

For the counts of rare events, the tail probabilities can be
approximated by the moderate deviations of Pn with

twists of the parameters.

The robustness of the tail behaviour of the Pn for large A

has not been incorporated into the bound.

We conjecture that bound can be sharpened by a factor

possibly as much as 1/3.

We don’t have any idea about the lower bound.



Thank youl
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