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Why?

• Distributional approximation pays little attention to the

tail probabilities.

• In statistical inference, the tail probabilities matter!

• The error estimates of distributional approximation are

useless because the tail probabilities are often

significantly smaller than the error estimates.
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What’s the moderate deviation?

Petrov (1975), p. 228: let Xi, 1 ≤ i ≤ n, be independent and identically
distributed (i.i.d.) random variables with E(X1) = 0 and Var(X1) = 1,
if for some t0 > 0,

Eet0|X1| ≤ c0 <∞,

then there exist positive constants c1 and c2 depending on c0 and t0 such
that

P
(

1√
n

∑n
i=1Xi ≥ z

)
1− Φ(z)

= 1 +O(1)
1 + z3√

n
, 0 ≤ z ≤ c1n1/6,

where Φ(z) is the distribution function of the standard normal, |O(1)| ≤
c2.

• c1 and c2?

• The range of values of n?
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Why do we need Poisson?

• Since the pioneering work Chen (1975), it has been

shown that, for the counts of rare events, Poisson

distribution and its “relatives” provide a better

approximation in terms of stronger metrics.

• BUT for the tail probabilities, we don’t need the stronger

metrics, can’t we use normal?
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Example

• Let {Xi : 1 ≤ i ≤ n} be iid with a continuous cumulative

distribution function, we are interested in the

distribution of records in {Xi}.

• X1 is always a record: ignore it.

• For 2 ≤ i ≤ n, Xi is a record if Xi > max1≤j≤i−1Xj .

• Ii := 1[Xi > max1≤j≤i−1Xj ].

• Sn :=
∑n

i=2 Ii.
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Approximations of Sn

• EIi = 1/i and {Ii : 2 ≤ i ≤ n} are independent.

• λn := ESn =
∑n

i=2
1
i ; σ2n = Var(Sn) =

∑n
i=2

1
i

(
1− 1

i

)
.

• λn − σn ∈ (0, 1).

• Under the Kolmogorov distance, the error of

– normal approximation is O(log−1/2 n),

– Poisson approximation is O(log−1 n).
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How about the tail probabilities?

We consider the tail probabilities P(Sn ≥ vn) with

vn := λn + 3 · σn and compare P(Sn ≥ vn) with moderate

deviations based on Pn(λn), Pn(σ2n), Nn ∼ N(λn, σ
2
n).
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P(Sn ≥ vn)/P(Nn ≥ vn)
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P(Sn ≥ vn)/P(Nn ≥ vn) with 0.5 correction
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P(Sn ≥ vn)/Pn(λn)([vn,∞))
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P(Sn ≥ vn)/Pn(σ2
n)([vn,∞))
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The winner is Pn(λn)
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Literature?
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Pn(1) tails vs Normal tails
(with and without .5 correction)
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One std to four std away from the mean
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One std to six std away from the mean
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Conclusions

Poisson(λ) vs N(λ, λ):

• Poisson has a heavier tail than normal tail;

• there is an acceleration of the ratio of the tail

probabilities beyond a few standard deviations when λ is

not large enough;

• unlike normal, looking at the # of standard deviations

away does not work for Pn when λ is not large enough;

• a small change of the value of λ has significant impact on

its moderate deviations.
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Poisson moderate deviation
– Chen, Fang & Shao (2013)

• Let Xi’s be Bernoulli rvs with P(Xi = 1) = pi, 1 ≤ i ≤ n.

• W =
∑n

i=1Xi.

• The moderate deviation bound is, with ξ = (k − λ)/
√
λ,∣∣∣∣ P(W ≥ k)

Pn(µ)([k,∞))
− 1

∣∣∣∣ ≤ C(max pi)(1 + ξ2).

• What is C?

[Slide 17]



Matching: similar

• n: fixed;

• π: a uniform random permutation of {1, . . . , n};

• Xi = 1{i=π(i)};

• W =
∑n

i=1Xi: # fixed points in the permutation.

• P({i = π(i)}) = 1/n so µ = 1.

• For j 6= i, E(Xj |Xi = 1) = 1/(n− 1), so∑
j 6=i E(Xj |Xi = 1) = 1, E(W 2) = 2/n and Var(W ) = 1.

• For all k with k2/n ≤ c,∣∣∣∣ P(W ≥ k)

Pn(1)([k,∞))
− 1

∣∣∣∣ ≤ C k2/n︸ ︷︷ ︸
≤c

.
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Our approach

• W : a non-negative integer-valued random variable with

mean µ and variance σ2.

• We consider a Pn approximation of W − a for an a < µ.

• W s has the size-biased distribution:

P(W = w) =
wP(W = w)

E(W )
, w ≥ 0.

• Let λ = µ− a, Y ∼ Pn(λ). Then for fixed integer k with

x := k−λ√
λ
≥ 1, we have∣∣∣∣P(W − a ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣
≤ 3λ−1xex

2+1 {µE|W + 1−W s|+ |µ− λ|}
+P(W − a < −1).
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When a = 0

The bound is reduced to∣∣∣∣P(W ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣ ≤ 3xex
2+1E|W + 1−W s|.

vs Chen, Fang & Shao (2013):∣∣∣∣P(W ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣ ≤ C(δ1 + δ2λ)(1 + x2).

• Our bound is easy to compute.

• It contains no unspecified constants.
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Can we do better?

• Pn(λ) is the stationary distribution of the birth-death

process with birth rate λ and unit per capita death rate.

• The solution of

Ag(j) := λ[g(j + 1)− g(j)] + j[g(j − 1)− g(j)]

= h(j)− Pn(λ){h}, j ≥ 0,

is

g(j) = −
∫ ∞
0
{E[h(Zj(t))]− Pn(λ)(h)}dt.
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• For h = 1[k,∞),

g(i)− g(i− 1) = −
∫ ∞
0

E [h(Zi(t))− h(Zi−1(t))] dt

= −E
∫ ∞
0

e−t1{Zi−1(t)=k−1}dt.

• Using coupling and the birth-death Markov process,

‖∆g‖ = O(λ−1/2)Pn(λ){h}, ‖∆2g‖ = O(λ−1)Pn(λ){h}.

• Using these estimates, together with some dependence

structure, we can work on W − a being approximated by

Pn(λ) through Stein’s equation:

P(W − a ≥ k)− Pn(λ)([k,∞))

= E[h(W − a)− Pn(λ){h}]
≈ EAg(W − a).
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• Some technical manipulation, we then get bounds in

terms of ‖∆g‖, ‖∆2g‖ and different characteristics of W .

• Because Pn(λ)([k,∞)) is in the bounds of ‖∆g‖ and

‖∆2g‖, divide both sides by Pn(λ)([k,∞)).
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Example

• {Xi, 1 ≤ i ≤ n}: independent Bernoulli random variables

with P(Xi = 1) = pi ∈ (0, 1), W =
∑n

i=1Xi.

• λ = EW − a > 0, σ2 = Var(W ), Y ∼ Pn(λ) and

x := k−λ√
λ
≥ 1,∣∣∣∣P(W − a ≥ k)

P(Y ≥ k)
− 1

∣∣∣∣
≤

[
4xex

2+1 + 1
]

something like max
i
pi/σ

+3|λ− σ2|xλ−1ex2+1 + exp

{
−(µ− a+ 2)2

2µ

}
.
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Matching problem

For a fixed n, let π be a uniform random permutation of

{1, . . . , n}, W =
∑n

i=1 1{i=π(i)} be the number of fixed points

in the permutation, then∣∣∣∣ P(W ≥ k)

Pn(1)([k,∞))
− 1

∣∣∣∣ ≤ 6

n
xex

2+1,

where x := k − 1 ≥ 1.
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Take home messages

• For the counts of rare events, the tail probabilities can be

approximated by the moderate deviations of Pn with

twists of the parameters.

• The robustness of the tail behaviour of the Pn for large λ

has not been incorporated into the bound.

• We conjecture that bound can be sharpened by a factor

possibly as much as 1/3.

• We don’t have any idea about the lower bound.
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Thank you!
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